Placeholder

Multiscale Materials Modeling

Edited By

Schmauder, Siegfried / Sch_fer, Immanuel

Publisher

Subject

,

Book Type

Price

€119.95 €107.96

In stock

Ships within 4-5 working days

Buy

Share On

(Hardback | ISBN 9783110412369 | 326 pages)

Summary

This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents:Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effectsLinking nanoscale and macroscaleMultiscale simulations on the coarsening of Cu-rich precipitates in &#945-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulationsMultiscale modeling predictions of age hardening curves in Al-Cu alloysKinetic Monte Carlo modeling of shear-coupled motion of grain boundariesProduct Properties of a two-phase magneto-electric compositePart II: Multiscale simulations of plastic deformation and fractureNiobium/alumina bicrystal interface fractureAtomistically informed crystal plasticity model for body-centred cubic ironFE2AT &#12539 finite element informed atomistic simulationsMultiscale fatigue crack growth modeling for welded stiffened panelsMolecular dynamics study on low temperature brittleness in tungsten single crystalsMulti scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructureMultiscale simulation of the mechanical behavior of nanoparticle-modified polyamide compositesPart III: Multiscale simulations of biological and bio-inspired materials, bio-sensors an